Space Weather Station Working Page
HF Receiver Project
There are currently many commerically available software defined radios (SDRs), but none seem to have all of the necessary features needed for an amateur personal space weather station, including cost, frequency accuracy/stability, timestamping, calibration, bandwidth, etc. We aim to create define the necesssary requirements and create an HF receiver suitable for amateur scientific work.
TangerineSDR
The HF SDR Receiver is being engineering by TAPR as the TangerineSDR. Please visit https://tangerinesdr.com/ for the latest information on this project.
Resources
General References
GPS Disciplined Oscillators
- Simple and Accurate Variable Frequency RF Signal Generator (Elwood Downey, WB0OEW, Reprinted with permission; September/October 2018 QEX, copyright ARRL.)
- The Use of GPS Disciplined Oscillators as Primary Frequency Standards for Calibration and Metrology Laboratories (Lombardi, 2008)
- U-Blox LEA-M8F Time and Frequency Reference GNSS Module Datasheet
Red Pitayas
The Red Pitaya is a (relatively) inexpensive multi-purpose development platform and lab instrument that can also be used as a 0.1-60 MHz SDR. While not entirely suited to radio science use, it provides a good starting point using commerically available hardware.
- Syncronize a Cluster of Red Pitayas
- W2NRL's PiRadar Red Pitaya Modifications
- Pavel Demin's Red Pitaya SDR Programs
- N5EG's GnuRadio HPSDR Block
- Information on 14:1 Impedance Transformer
Data Recording
Ionosonde Receiver Project
Magnetometer Project
A magnetometer that is usable for space science/space weather needs to have a resolution > 5 nT to be useful. Inexpensive magnetometers, such as the ones found in cell phones, are typically hall effect or magnetoresistive magnetometers with resolutions > 100 nT and are only sensitive to the very largest (rare) space weather events.
Planning Documents
Resources
- Hyomin Kim's Magnetometer PowerPoint Presentation
- British Geological Survey Raspberry Pi Magnetometer
- This appears to be adequate for space science/space weather, but still a little expensive.
- HoneyWell HMC100x Magnetometer Chip
- Specification Sheet
- Low-cost chip, but still uncertain that the resolution is adequate at low frequencies.
- Bridging the gap between AMR, GMR, and Hall magnetic sensors (Popovik et al., 2002)
- Space magnetometer based on an anisotropic magnetoresistive hybrid sensor (Brown et al., 2014)
- RM3100 Review: Investigation of a low-cost magneto-inductive magnetometer for space science applications (Regoli et al., 2018)
Articles
- The Personal Space Weather Station by Ward Silver, N0AX
- QST, April 2018, Reprinted with Permission
Presentations
- Science Questions for a Personal Space Weather Station by Nathaniel Frissell, W2NAF
- HamSCI Workshop, CWRU, Cleveland, OH, March 2019
- Personal Space Weather Station Overview by Nathaniel Frissell, W2NAF
- HamSCI Workshop, NJIT, Newark NJ, February 2018
- TAPR Sunday Seminar by Nathaniel Frissell, W2NAF
- TAPR Digital Communications Conference, Albuquerque, NM, September 2018
- PDF of Slides
Page Maintained by Dr. Nathaniel Frissell, W2NAF